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Abstract

This study presents a proof-of-concept, comprehensive, modular framework for AI-driven drug discovery (DD) and clinical
trial simulation, spanning from target identification to virtual patient recruitment. Synthesized from a systematic analysis
of 51 LLM-based systems, the proposed Prompt-to-Pill∗architecture and corresponding implementation leverages a multi-
agent system (MAS) divided into DD, preclinical and clinical phases, coordinated by a central Orchestrator. Each phase
comprises specialized large language model (LLM) for molecular generation, toxicity screening, docking, trial design,
and patient matching. To demonstrate the full pipeline in practice, the well-characterized target Dipeptidyl Peptidase
4 (DPP4) was selected as a representative use case. The process begins with generative molecule creation and proceeds
through ADMET evaluation, structure-based docking, and lead optimization. Clinical-phase agents then simulate trial
generation, patient eligibility screening using EHRs, and predict trial outcomes. By tightly integrating generative,
predictive, and retrieval-based LLM components, this architecture bridges drug discovery and preclinical phase with
virtual clinical development, offering a demonstration of how LLM-based agents can operationalize the drug development
workflow in silico.
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Introduction

The ability of LLMs to learn from massive datasets and adapt to

diverse inputs provides unprecedented capabilities that surpass

traditional methods. Their use accelerates decision-making and

reduces experimental costs across the development pipeline

[Oniani et al., 2024], as evidenced by applications ranging from

generating novel molecular structures [Sheikholeslami et al.,

2025, Li et al., 2023] to predicting pharmacokinetics and

toxicity [Cai et al., 2025, Liu et al., 2024], simulating clinical

trials [Xu et al., 2025], and optimizing patient-trial matching

[Datta et al., 2025, Lin et al., 2024].

The integration of LLMs into drug development pipelines

has gained notable traction, especially across preclinical phases.

Gao et al. proposed a domain-guided MAS for reliable

drug-target interaction (DTI) prediction, using a debate-based

ensemble of LLMs. The framework partitions the DTI task into

protein sequence understanding, drug structure analysis, and

binding inference, handled by dedicated agents. Evaluation was

conducted on the BindingDB dataset, showing improvements in

both accuracy and prediction consistency compared to single-

LLM baselines. The system integrates GPT-4o, LLaMA-3, and

GLM-4-Plus [Gao et al., 2024].

Lee et al. developed CLADD, a retrieval-augmented MAS

addressing multiple DD tasks. CLADD includes specialized

∗https://github.com/ChatMED/Prompt-to-Pill

teams for molecular annotation, knowledge graph querying,

and prediction synthesis. Evaluations spanned property-

specific captioning (BBBP, SIDER, ClinTox, BACE), target

identification (DrugBank, KIBA), and toxicity classification.

All agents were instantiated with GPT-4o-mini, showcasing

the utility of general-purpose models when combined with

structured RAG mechanisms [Lee et al., 2025].

Song et al. presented PharmaSwarm, a hypothesis-

driven agent swarm for therapeutic target and compound

identification. The architecture orchestrates three specialized

agents (Terrain2Drug, Market2Drug, Paper2Drug) and a

central evaluator, all integrated via a shared memory and tool-

augmented validation layer. Case studies included idiopathic

pulmonary fibrosis and triple-negative breast cancer, combining

omics analysis, literature mining, and market signals. Agents

were powered by GPT-4, Gemini 2.5, and TxGemma [Song

et al., 2025].

Yang et al. proposed DrugMCTS, a novel multi-agent drug

repurposing system that incorporates Monte Carlo Tree Search

(MCTS) with structured agent workflows. Using Qwen2.5-7B-

Instruct for all agents, the system conducts iterative reasoning

across molecule retrieval, analysis, filtering, and protein

matching. The framework was benchmarked on DrugBank and

KIBA, achieving up to 55.34% recall. A case study involving

Equol and CXCR3 showed successful prediction of interaction,

supported by AutoDock Vina simulations with a binding score

of −8.4 kcal/mol [Yang et al., 2025].
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Inoue et al. introduced DrugAgent, an explainable multi-

agent reasoning system for drug repurposing. Their architecture

coordinates agents handling knowledge graph queries, machine

learning scoring, and biomedical literature summarization.

Evaluation on a kinase inhibitor dataset revealed strong

interpretability and modularity. Detailed ablation studies

confirmed that each agent contributes distinctly to the

performance. The system employed GPT-4o, o3-mini, and

GPT-4o-mini, and the full pipeline is available open-source

[Inoue et al., 2024]. Among the surveyed systems, only

DrugAgent provides a publicly accessible implementation1.

None of the described MASs engages with clinical trial

simulation, real-world evidence (RWE), or electronic health

records (EHRs), thereby limiting their applicability to the

preclinical stage of drug development.

This paper introduces Prompt-to-Pill, a unified multi-

agent framework build on a systematic analysis of 51

LLM-based studies published between 2022 and 2025. The

architecture integrates specialized LLM agents for molecule

generation, docking, property prediction, trial construction,

patient matching, and outcome forecasting through a

central Orchestrator. Unlike prior frameworks confined to

molecule-level reasoning, Prompt-to-Pill provides a proof-of-

concept prototype from molecular ideation to virtual trial

execution, demonstrating how modular LLM agents can operate

synergistically within a closed-loop DD and development

ecosystem. A complete implementation of the pipeline is

available at GitHub2.

Methods

The systematic review was conducted in accordance with

the Preferred Reporting Items for Systematic Reviews and

Meta-Analyses (PRISMA) guidelines. The PRISMA framework

was employed to ensure transparency, methodological rigor,

and reproducibility in identifying, screening, and synthesizing

eligible studies. A structured multi-stage review process was

followed, encompassing database search, eligibility screening,

full-text assessment, and data extraction. The complete

selection workflow is detailed in the accompanying PRISMA

flow diagram depicted in Figure 1.

Fig. 1. PRISMA-based selection process.

1 https://anonymous.4open.science/r/DrugAgent-B2EA
2 https://github.com/ChatMED/Prompt-to-Pill

Information Sources and Search Strategy
A structured and comprehensive literature search was

conducted to identify and evaluate LLM-based approaches

applied in drug design and discovery. The search was

conducted between May 1 and June 15, 2025 across PubMed,

ScienceDirect, Google Scholar, and Springer Nature Link. The

search covered the publication period 2022 - 2025.

Search queries with predefined Boolean combinations

captured studies across all DD stages. Representative search

strings included: “large language models” AND (“target

identification” OR “binding site prediction”), “large language

models” AND (“molecule generation” OR “de novo molecule

generation”), “large language models” AND (“clinical

trial design” OR “eligibility criteria extraction” OR “trial

outcome prediction”), “retrieval-augmented generation”

AND (“drug discovery” OR “clinical trials”), “large language

models” AND (“patient recruitment” OR “clinical trial

matching” These terms were selected to align with a conceptual

pipeline spanning DD, preclinical and clinical phases of

pharmaceutical development.

Study Selection Process
Two reviewers independently screened the titles and abstracts

of all retrieved records. Full-text reviews were then performed

to assess eligibility based on the predefined inclusion and

exclusion criteria.

The inclusion criteria were defined as follows: open-source

studies written in English; publications or preprints published

between 2022 and 2025; research incorporating LLMs for drug

development tasks with clearly defined input–output structure,

functional purpose, and workflow integration potential; and

studies relevant to at least one stage of the DD or clinical trial

process.

The exclusion criteria were: articles not written in

English; studies lacking a clear methodological or architectural

description; studies that are not publicly accessible; and

research not directly applicable to any stage of drug

development.

The PRISMA flow diagram in Figure 1 details the number

of records identified, screened, excluded (with reasons), and

finally taken into consideration for building the Prompt-to-Pill

pipeline.

Data Extraction and Synthesis
For each included study, detailed metadata were manually

extracted into structured tables, one for preclinical models and

DD and another for clinical applications. Metadata fields were

designed to support both technical evaluation and contextual

information from each source as follows:

-Bibliographic: Authors, Year, Title, DOI.

-Technical: Base model (e.g., GPT-4, BioGPT), Task

Type, RAG usage, Evaluation Metrics, Datasets.

- Reproducibility: GitHub/Hugging Face links, Input/Output

examples.

-Contextual: Task Narrative, Clinical Trial Phase (I–IV),

Abstract Summary.

Extracted data were then synthesized by stage as needed

for the drug development pipeline. Studies were profiled and

compared across multiple dimensions including application

scope, base architecture, task type, and dataset diversity. The

The complete metadata tables containing all reviewed studies

are provided in the Section 9. This structured comparison
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informed the construction of the Prompt-to-Pill multi-agent

framework introduced later in the paper.

Methodology

Prompt-to-Pill Architecture Foundation
The systematic review of 51 studies (2022–2025) shows a sharp

growth in research, peaking in 2024 (14 preclinical/DD, 8

clinical), with 17 in 2025, and fewer in 2022 (4) and 2023 (8).

Preclinical/DD studies mainly used generative LLMs such

as LLaMA and GPT-2 for creative molecular tasks on

open datasets (TDC, DrugBank). Models like DrugGen

[Sheikholeslami et al., 2025] and DrugGPT [Li et al., 2023]

generate SMILES from protein sequences, 3D structures, or

text, while others introduce spatial constraints (3DSMILES-

GPT [Wang et al., 2025b]) or RNA design (GenerRNA

[Zhao et al., 2024]). DrugAssist [Ye et al., 2023] extends

this process with prompt-based molecule optimization, refining

compounds to improve pharmacological properties. LLMs also

support ADMET prediction, synthesis feasibility, and reactivity

analysis [Cai et al., 2025, Wang et al., 2025a, Chaves et al.,

2024], as well as biological interaction modeling and drug

repurposing [Beasley et al., 2025, Li et al., 2025, Edwards et al.,

2023, Schmitt et al., 2025].

Clinical studies, by contrast, rely on discriminative or

hybrid models such as GPT-4 and BioBERT, often trained on

structured data (e.g., ClinicalTrials.gov). About half of the 19

clinical papers propose cross-phase models addressing patient

selection, outcome prediction, and document generation. LLMs

assist in patient-trial matching [Datta et al., 2025, Lin et al.,

2024], trial simulation [Wang et al., 2024, Reinisch et al., 2024,

Xu et al., 2025], and pharmacovigilance through tools like

AskFDALabel and DAEDRA [Wu et al., 2025, von Csefalvay,

2024], occasionally enhanced with RAG pipelines for context-

aware text generation [Markey et al., 2025, Painter et al.,

2025].

Retrieval-augmented generation (RAG) methods showed

limited adoption despite their potential for complex reasoning

tasks. As shown in Table 1, most studies provided input

examples but fewer included output data or reproducible

code, underscoring the need for transparency and standardized

evaluation.

This analysis informed the design of the proposed Prompt-

to-Pill architecture, implemented using the AutoGen [Wu et al.,

2024] framework for scalable multi-agent AI systems. Each

agent is adapted from rigorously evaluated domain models, with

key performance metrics summarized in Table 2.

The datasets listed in Table 2 implicitly define the

applicability domains (ADs) of the models integrated into

the pipeline. For example, ChemFM’s ADME and toxicity

predictors are trained on specific benchmarking collections of

drug-like compounds, while Panacea and MediTab operate

within the disease areas and trial structures represented in

CT.gov, SIGIR, and TREC. Because Prompt-to-Pill connects

these components sequentially, the effective AD of the full

system corresponds to the intersection of all model-specific

ADs.

The Prompt-to-Pill Multi-Agent Pipeline
Constructed from the models identified and reviewed in this

study, a comprehensive AI-driven pipeline for DD and clinical

trial simulation is presented in Figure 2, structured into three

main phases: DD Agents, Preclinical Agents and Clinical

Agents, coordinated by a central Orchestrator, assisted by

a Planning Agent. The workflow is task-driven, dynamically

selecting the appropriate agent and its tools according to the

requirements of the given task.

In our scenario, we demonstrate this process by focusing on

the development of drug candidates for the DPP4 protein target

(UniProt ID: P27487). For this drug development task, the

pipeline begins with Drug Discovery Agents. Here we have 3

subgroups of agents: Hits Generation, Leads Identification and

Lead Optimization.

The workflow begins with Hits Generation, where the Drug-

Generation Agent, based on the DrugGen framework [Sheikholeslami

et al., 2025], produces a set of candidate SMILES sequences.

Then the generated SMILES are docked against the target

with Docking Agent. The Docking Agent is responsible for

evaluating the binding affinity of generated molecules against

the target protein. Retrieves the target structure from the

Protein Data Bank [Berman et al., 2000] or defaults to

AlphaFold models [Jumper et al., 2021] when no experimental

structure is available. Candidate SMILES from the Drug-

Generation Agent are converted into 3D conformations using

RDKit3. Binding pockets are predicted with P2Rank [Krivák

and Hoksza, 2019]4, and the highest-ranked pocket defines

the docking box, whose coordinates are extracted from the

P2Rank output and expanded with a fixed padding margin.

With receptor and ligand prepared, AutoDock Vina (v1.1.2)

performs docking within the predicted pocket, generating 20

poses ranked by affinity. Using this approach, we achieved

RMSD lower than 2 Å in 86.59% of cases and a mean RMSD

of 1.16 Å on the Astex dataset. The docking setup and

visualization, including binding sites, grid box, and ligand, are

shown in Figure 3

Following the generation and docking of hits, the workflow

progresses to the Lead Identification stage. The Chemical

Properties Agent calculates key physicochemical descriptors

(molecular weight, logP, TPSA, hydrogen bond donors and

acceptors, rotatable bonds, QED, etc.) using RDkit driven tools

. Molecules are filtered according to Lipinski’s Rule of Five5

[Lipinski et al., 2001] and Veber’s rules6 [Veber et al., 2002],

ensuring that only drug-like compounds advance. In parallel,

the ADMET Properties Agent, using ChemFM[Cai et al., 2025]

framework, is also invoked at this stage to provide an early

assessment of ADMET. Properties that this agent can predict

are presented in 2. Compound that show the most favorable

docking, pass physicochemical filters, and exhibit acceptable

ADMET predictions is prioritized as lead.

Next is Lead Optimizations stage. This stage focuses on

optimizing the chosen molecule to enhance its pharmacological

profile while preserving strong binding affinity to the

DPP4 target. The Molecule Optimization Agent, based on

DrugAssist [Ye et al., 2023], iteratively modifies the structure to

enhance bioavailability, solubility, and safety. Each optimized

variant is re-evaluated by the ADMET Properties Agent and

Docking Agent, and this loop continues until optimal properties

are achieved.

The optimized compound with properties serve entry point

into the Preclinical Phase, where the optimized candidate

3 https://www.rdkit.org
4 P2Rank success rates: 72.0% Top-n, 78.3% Top-(n+2) on
COACH420; 68.6% Top-n, 74.0% Top-(n+2) on HOLO4K
5 HBD ⩽ 5, HBA ⩽ 10,MW ⩽ 500, logP ⩽ 5
6 RotB ⩽ 10, TPSA ⩽ 140Å
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Fig. 2. Prompt-to-Pill Multi-Agent Architecture.

Fig. 3. Docking visualization of DPP4 (PDB ID: 2QT9) showing

the predicted binding pocket (green grid box; center = 37.87, 49.09,

36.58; edge = 25.02 Å) and the docked ligand (magenta; SMILES:

OB(O)c1nnc2n1-c1ccc(Cl)cc1C(c1ccccc1F)=NC2). Pocket side chains are

shown as colored sticks (colors for visual separation only) and correspond

to validated binding residues ARG125, GLU205, GLU206, TYR547,

TYR631, SER630, HIS740, and ASN710 [Mathur et al., 2023].

undergoes systematic pharmacokinetic and toxicity profiling

using ADMET Agent’s tools. Once these evaluations are

completed, the workflow is shifted into the Clinical Phase

for trial simulation.

In the Clinical Phase, the Trial Generation Agent

constructs a trial protocol tailored to the compound and disease

driven by Panacea model for criteria, arms and outcomes

prediction. This protocol is parsed into structured data and

passed to the Patient-Matching Agent, which also employs

the Panacea model [Lin et al., 2024] to evaluate patient

EHR descriptions and identify candidates who meet the trial’s

inclusion and exclusion criteria. The agent returns number of

matched patients in the final report, and a set of matched

patient IDs. These identifiers are saved to a file and the

total number of matched patients is computed and included

in the final trial report. Subsequently, the Trial Outcome

Prediction Agent uses MediTab [Wang et al., 2024] to estimate

the probability that the proposed trial will succeed, given

its protocol structure. In line with the original MediTab

formulation[Wang et al., 2024], this module operates on trial-

level metadata and text and learns patterns from historical

ClinicalTrials.gov and HINT benchmarks.

Finally, the matched patient data, drug properties, and trial

design are provided to the Orchestrator, which aggregates all

outputs into a structured report.

The input and output format for the Dipeptidyl peptidase

4 (DPP4) target are shown in Figure 4.

Limitations and Future Work

Prompt-to-Pill is designed as a research-oriented, hypothesis-

generation framework intended for use exclusively by trained

professionals such as bioinformaticians, medicinal chemists,

pharmacologists, and clinicians. The system is not intended

for clinical or regulatory decision-making. Instead, its outputs

serve as exploratory insights that must be experimentally

or clinically validated before any real-world application. The

framework aims to support early ideation, academic research,

and computational prototyping. While the proposed Prompt-

to-Pill pipeline offers a structured, automated approach to drug

discovery and clinical simulation, several limitations remain.

First, as shown in Figure 2, some agents remain conceptual

placeholders (highlighted in grey), like Target Identification

Agent, the Formulation and Dosage Development Agent,

FDA or EMA approval and documentation and the

Pharmacovigilance and Safety Monitoring Agent. Although

we identified related approaches in the literature, most

lack accessible implementations or compatible I/O interfaces,

preventing integration. Bridging this gap remains a key

direction for future work.

Second, the Orchestrator is currently implemented using

OpenAI’s o4-mini model, which has been shown to perform

strongly in medical reasoning and biomedical tasks Arora et al.

[2025]. However, in the trial generation phase, its role is used to

producing structured protocol fields such as:study documents,

brief summary, acronym, brief title, official title,study status,

study start date, primary completion date, completion date,

condition, study type, phase, intervention model, allocation,

masking, and enrollment. While useful for structuring and

simulating trial protocols, these outputs cannot substitute for

expert-driven trial design.

Third, each component model operates within the

applicability domain (AD) of its training data, and the pipeline

therefore inherits the intersection of all ADs. Predictions
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Fig. 4. Prompt-to-Pill’s I/O example for Task: “Simulate drug development for DPP4 (P27487) with patients on /path/to/patients.xml”. ”Trial Success

Probability” correspond to MediTab’s predicted likelihood of clinical trial success based on protocol text and structured trial metadata (e.g., phase,

condition, enrollment, arms, outcomes), and do not represent estimates of the underlying drug’s biological efficacy.

involving molecules, trial structures, or patient populations far

from these distributions should be interpreted as exploratory,

not definitive.

This study also presents only a single-target case (DPP-

4, P27487), demonstrating feasibility but not generalizability.

Future work will extend the framework to multiple targets and

diseases for broader validation.

Future work will focus on completing missing agents,

enlarging the AD of existing components, and performing

multi-disease, multi-target validation studies.

Discussion

While LLMs have opened transformative opportunities in drug

discovery and clinical research, realizing their full potential

requires addressing key challenges in transparency, evaluation

consistency, and reproducibility.

A key limitation is the limited reasoning ability of

current models. In biomedical contexts, correctness alone is

insufficient—decisions must be grounded in clear, interpretable

reasoning that experts can verify. To address this, several recent

models have introduced mechanisms to make reasoning more

explicit. These include retrieval-augmented generation [Wang

et al., 2025a, Xu et al., 2025, Feng et al., 2025], instruction-

tuned multitask learning [Liu et al., 2024, Ma et al., 2024], and

multi-hop rationale generation [Feng et al., 2025, Wang et al.,

2023]. Such approaches represent important progress toward

interpretability. However, without standardized frameworks to

assess reasoning quality or consistency, trust in LLM-driven

biomedical insights remains limited.

Another major challenge in LLM-based DD is the

inconsistency in evaluation protocols across model types.

Generative models are assessed using metrics like validity,

docking scores, or QED [Sheikholeslami et al., 2025, Wang

et al., 2025b, Zhao et al., 2024], while discriminative models

report AUROC or F1 scores [Wang et al., 2025a, Liu

et al., 2024, Ma et al., 2024], yet differ in datasets and

thresholds. Knowledge-retrieval and reasoning systems often

rely on qualitative outputs without standardized measures

[Feng et al., 2025, Wang et al., 2023]. This fragmentation

hinders comparability and progress. To address this, the field

urgently needs task-specific, model-type-sensitive benchmarks.

Reproducibility and transparency also remain persistent

issues. Many studies lack public access to code, models, or I/O

examples, and when repositories exist, documentation is often

incomplete. This fragmentation limits cumulative progress and

undermines trust.

These models are the future of drug development, but there

is still much work to be done. The path forward requires not

only better models, but better systems around the models. This

includes standardized evaluations, transparent documentation,

expert-guided development, and thoughtful regulation. Only by

meeting these unmet needs can we ensure that LLMs evolve

from experimental tools to trusted agents in the future of

biomedical discovery.

Ethical and Regulatory Considerations

As highlighted in recent discussions on responsible biomedical

AI deployment [Tang et al., 2025], LLM-based systems in
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safety-critical domains such as clinical trial design raise central

concerns around transparency, explainability, bias mitigation,

and the risk of over-reliance on unvalidated outputs. The

European Union’s Artificial Intelligence Act (2024) explicitly

designates healthcare AI as “high-risk” (Recital 58; Annex

III), requiring safeguards such as traceability, human oversight,

and fundamental rights impact assessments. The authors have

recently published their work on AI Act compliance within the

MyHealth@EU framework [Simjanoska Misheva et al., 2025],

demonstrating strong ethical responsibility in advancing AI

use within sensitive healthcare environments. Their tutorial

addresses the dual-compliance challenge of embedding AI

Act safeguards (transparency, provenance, robustness) while

meeting MyHealth@EU interoperability requirements, showing

how AI metadata can be integrated into HL7 CDA and

FHIR messages without disrupting existing standards. The

goal is not to bypass current guidelines but to ease clinicians’

workload, strengthen trust in AI-assisted decisions, and

ensure that compliance and safety are engineered into systems

from the outset. In this context, the present pipeline is

strictly positioned as a research prototype and decision-support

artifact, never as an automated tool for patient eligibility or

therapeutic approval. By embedding governance mechanisms

early and framing the work as proof-of-concept exploration, the

approach contributes to the broader dialogue on trustworthy

AI in DD while acknowledging the rigorous benchmarking,

reproducibility, and expert oversight still required before

clinical translation.

Conclusion

To illustrate practical integration, the Prompt-to-Pill multi-

agent framework was proposed, uniting specialized LLM agents

to automate decision-making across preclinical and clinical

stages. This architecture showcases how coordinated LLM

workflows can collaborate, iterate, and self-correct within

a modular design. Crucially, the successful implementation

of this architecture served simultaneously as a ”limitation

demonstrator,” significantly highlighting the applicability

domain limitations and systemic challenges that must be

overcome, thereby establishing a rigorous foundation upon

which reliable hypothesis generation can be built.

Looking ahead, the progress of LLM-driven drug development

will depend not only on more capable models but on robust

evaluation protocols, transparent sharing, and clear regulatory

standards. Addressing these challenges will allow LLMs not just

to accelerate, but to redefine the future of drug development.

Code Availability

The full implementation of the Prompt-to-Pill multi-agent DD

and clinical simulation pipeline is available at the GitHub

repository: https://github.com/ChatMED/Prompt-to-Pill.

Supplementary Material

Table with the retrieved papers for this review is available at

the following link: Supplementary Table 1.
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Table 2. Evaluation metrics of the core agents used in the clinical workflow

Citation Agent Dataset / Task Metric(s) Value(s) Type

[Sheikholeslami

et al., 2025]

Molecule Generation

(Druggen)

– Validity, Novelty,

Diversity

99.9%, 41.88%,

60.32%

Generation

[Cai

et al.,

2025]

Property

Prediction

(ChemFM)

Drug Oral Bioavailability ROC-AUC 0.715 ± 0.011 Classification
BBB ROC-AUC 0.908 ± 0.010 Classification
Drug Half-Life Duration Spearman 0.551 ± 0.020 Regression
Drug Mutagenicity ROC-AUC 0.854 ± 0.007 Classification
Clearance Hepatocyte Spearman 0.495 ± 0.030 Regression
Clearance Microsome Spearman 0.611 ± 0.016 Regression
DILI ROC-AUC 0.920 ± 0.012 Classification
hERG Channel Blockage ROC-AUC 0.848 ± 0.009 Classification
Drug Acute Toxicity MAE 0.541 ± 0.015 Regression
PPBR MAE 7.505 ± 0.073 Regression
P-glycoprotein Inhibition ROC-AUC 0.931 ± 0.003 Classification
Drug Aqueous Solubility MAE 0.725 ± 0.011 Regression
VDss Spearman 0.662 ± 0.013 Regression
CYP2C9 Inhibition PRC-AUC 0.788 ± 0.005 Classification
CYP3A4 Inhibition PRC-AUC 0.878 ± 0.003 Classification
CYP2C9 Substrate PRC-AUC 0.414 ± 0.027 Classification
CYP2D6 Inhibition PRC-AUC 0.704 ± 0.003 Classification
CYP2D6 Substrate PRC-AUC 0.739 ± 0.024 Classification
Human IA ROC-AUC 0.984 ± 0.004 Classification
CYP3A4 Substrate ROC-AUC 0.654 ± 0.022 Classification
Drug Permeability MAE 0.322 ± 0.026 Regression

[Wang

et al.,

2024]

Trial

Outcome

Prediction(Meditab)

Phase I Trials AUROC, PRAUC 0.699, 0.726 Classification
Phase II Trials AUROC, PRAUC 0.706, 0.733 Classification
Phase III Trials AUROC, PRAUC 0.734, 0.881 Classification

[Ye et al., 2023] Molecule Optimization

(DrugAssist)

- Solubility, BBBP, All,

Valid rate, Similarity

0.74, 0.80, 0.62, 0.98,

0.69

Generation

[Lin

et al.,

2024]

PatientMatching

(Panacea)

SIGIR BACC, F1, R, P 0.43, 0.57, 0.52, 0.66 Classification
TREC 2021 BACC, F1, R, P 0.47, 0.58, 0.54, 0.69 Classification

TrialDesign

(Panacea)

Criteria BLEU, ROUGE, CR 0.24, 0.44, 0.68 Generation
Arms BLEU, ROUGE, CR 0.28, 0.50, 0.61 Generation
Outcome BLEU, ROUGE, CR 0.31, 0.51, 0.55 Generation

Source: Metrics are based on results reported in the original publications.

1ROC-AUC/AUROC: Area under the Receiver Operating Characteristic Curve, MAE: Mean Absolute Error, PRC-AUC/PRAUC: Area Under Precision-

Recall Curve, BACC: Balanced Accuracy; R: Recall, P: Precision, F1: F1 Score, BLEU: Bilingual Evaluation Understudy, ROUGE: Recall-Oriented

Understudy for Gisting Evaluation, CR: Clinical Relevance


