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Abstract

This study presents a proof-of-concept, comprehensive, modular framework for Al-driven drug discovery (DD) and clinical
trial simulation, spanning from target identification to virtual patient recruitment. Synthesized from a systematic analysis
of 51 LLM-based systems, the proposed Prompt-to-Pill*architecture and corresponding implementation leverages a multi-
agent system (MAS) divided into DD, preclinical and clinical phases, coordinated by a central Orchestrator. Each phase
comprises specialized large language model (LLM) for molecular generation, toxicity screening, docking, trial design,
and patient matching. To demonstrate the full pipeline in practice, the well-characterized target Dipeptidyl Peptidase
4 (DPP4) was selected as a representative use case. The process begins with generative molecule creation and proceeds
through ADMET evaluation, structure-based docking, and lead optimization. Clinical-phase agents then simulate trial
generation, patient eligibility screening using EHRs, and predict trial outcomes. By tightly integrating generative,
predictive, and retrieval-based LLM components, this architecture bridges drug discovery and preclinical phase with
virtual clinical development, offering a demonstration of how LLM-based agents can operationalize the drug development
workflow in silico.
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Introduction teams for molecular annotation, knowledge graph querying,
and prediction synthesis. Evaluations spanned property-
specific captioning (BBBP, SIDER, ClinTox, BACE), target
identification (DrugBank, KIBA), and toxicity classification.
All agents were instantiated with GPT-4o0-mini, showcasing

The ability of LLMs to learn from massive datasets and adapt to
diverse inputs provides unprecedented capabilities that surpass
traditional methods. Their use accelerates decision-making and

reduces experimental costs across the development pipeline
P P pib the utility of general-purpose models when combined with

structured RAG mechanisms [Lee et al., 2025].
Song et al. presented PharmaSwarm, a hypothesis-

[Oniani et al., 2024], as evidenced by applications ranging from
generating novel molecular structures [Sheikholeslami et al.,
2025, Li et al., 2023] to predicting pharmacokinetics and . X
L . . . . L. driven agent swarm for therapeutic target and compound
toxicity [Cai et al., 2025, Liu et al., 2024], simulating clinical X K X K o
. L. . . . identification. The architecture orchestrates three specialized
trials [Xu et al., 2025], and optimizing patient-trial matching
[Datta et al., 2025, Lin et al., 2024].

The integration of LLMs into drug development pipelines

agents (Terrain2Drug, Market2Drug, Paper2Drug) and a
central evaluator, all integrated via a shared memory and tool-

. . . L. augmented validation layer. Case studies included idiopathic
has gained notable traction, especially across preclinical phases. i 8 k .
. . . pulmonary fibrosis and triple-negative breast cancer, combining
Gao et al. proposed a domain-guided MAS for reliable K K K . .
R . . . omics analysis, literature mining, and market signals. Agents
drug-target interaction (DTI) prediction, using a debate-based

ensemble of LLMs. The framework partitions the DTT task into
protein sequence understanding, drug structure analysis, and

were powered by GPT-4, Gemini 2.5, and TzxGemma [Song
et al., 2025].

Y: 1. DrugMCT, 1 1ti-
binding inference, handled by dedicated agents. Evaluation was ang .et al. proposed i rugMCTS, a novel multi-agent drug
repurposing system that incorporates Monte Carlo Tree Search
(MCTS) with structured agent workflows. Using Qwen2.5-7B-

Instruct for all agents, the system conducts iterative reasoning

conducted on the BindingDB dataset, showing improvements in
both accuracy and prediction consistency compared to single-
LLM baselines. The system integrates GPT-40, LLaMA-3, and
GLM-4-Plus [Gao et al., 2024].

Lee et al. developed CLADD, a retrieval-augmented MAS
addressing multiple DD tasks. CLADD includes specialized

across molecule retrieval, analysis, filtering, and protein
matching. The framework was benchmarked on DrugBank and
KIBA, achieving up to 55.34% recall. A case study involving
Equol and CXCR3 showed successful prediction of interaction,
supported by AutoDock Vina simulations with a binding score

*https://github.com/ChatMED /Prompt-to-Pill of —8.4 kecal/mol [Yang et al., 2025].
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Inoue et al. introduced DrugAgent, an explainable multi-
agent reasoning system for drug repurposing. Their architecture
coordinates agents handling knowledge graph queries, machine
learning scoring, and biomedical literature summarization.
Evaluation on a kinase inhibitor dataset revealed strong
Detailed ablation studies

confirmed that each agent contributes distinctly to the

interpretability and modularity.

performance. The system employed GPT-4o0, o03-mini, and
GPT-4o-mini, and the full pipeline is available open-source
[Inoue et al., 2024]. Among the surveyed systems, only
DrugAgent provides a publicly accessible implementation®.

None of the described MASs engages with clinical trial
simulation, real-world evidence (RWE), or electronic health
records (EHRs), thereby limiting their applicability to the
preclinical stage of drug development.

This paper introduces Prompt-to-Pill, a unified multi-
agent framework build on a systematic analysis of 51
LLM-based studies published between 2022 and 2025. The
architecture integrates specialized LLM agents for molecule
generation, docking, property prediction, trial construction,
patient matching, and outcome forecasting through a
central Orchestrator. Unlike prior frameworks confined to
molecule-level reasoning, Prompt-to-Pill provides a proof-of-
concept prototype from molecular ideation to virtual trial
execution, demonstrating how modular LLM agents can operate
synergistically within a closed-loop DD and development
ecosystem. A complete implementation of the pipeline is
available at GitHub?.

Methods

The systematic review was conducted in accordance with
the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines. The PRISMA framework
was employed to ensure transparency, methodological rigor,
and reproducibility in identifying, screening, and synthesizing
eligible studies. A structured multi-stage review process was
followed, encompassing database search, eligibility screening,
full-text assessment, and data extraction. The complete
selection workflow is detailed in the accompanying PRISMA

flow diagram depicted in Figure 1.
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Fig. 1. PRISMA-based selection process.

1 https://anonymous.4open.science/r/DrugAgent-B2EA
2 https://github.com/ChatMED/Prompt-to-Pill

Information Sources and Search Strategy

A  structured and comprehensive literature search was
conducted to identify and evaluate LLM-based approaches
applied in drug design and discovery. The search was
conducted between May 1 and June 15, 2025 across PubMed,
ScienceDirect, Google Scholar, and Springer Nature Link. The
search covered the publication period 2022 - 2025.

Search queries with predefined Boolean combinations
captured studies across all DD stages. Representative search
strings included: “large language models” AND (“target
identification” OR “binding site prediction”), “large language
models” AND (“molecule generation” OR “de mnovo molecule
generation”),  “large language models” AND (“clinical
trial design” OR “eligibility criteria extraction” OR “trial
outcome prediction”), “retrieval-augmented generation”
AND (“drug discovery” OR “clinical trials”), “large language
models” AND (“patient recruitment” OR “clinical trial
matching” These terms were selected to align with a conceptual
pipeline spanning DD, preclinical and clinical phases of
pharmaceutical development.

Study Selection Process

Two reviewers independently screened the titles and abstracts
of all retrieved records. Full-text reviews were then performed
to assess eligibility based on the predefined inclusion and
exclusion criteria.

The inclusion criteria were defined as follows: open-source
studies written in English; publications or preprints published
between 2022 and 2025; research incorporating LLMs for drug
development tasks with clearly defined input—output structure,
functional purpose, and workflow integration potential; and
studies relevant to at least one stage of the DD or clinical trial
process.

The exclusion criteria were: articles not written in
English; studies lacking a clear methodological or architectural
description; studies that are not publicly accessible; and
research not directly applicable to any stage of drug
development.

The PRISMA flow diagram in Figure 1 details the number
of records identified, screened, excluded (with reasons), and
finally taken into consideration for building the Prompt-to-Pill
pipeline.

Data Extraction and Synthesis
For each included study, detailed metadata were manually
extracted into structured tables, one for preclinical models and
DD and another for clinical applications. Metadata fields were
designed to support both technical evaluation and contextual
information from each source as follows:

-Bibliographic: Authors, Year, Title, DOI.

-Technical: Base model (e.g., GPT-4, BioGPT), Task
Type, RAG usage, Evaluation Metrics, Datasets.

- Reproducibility: GitHub/Hugging Face links, Input/Output

examples.

-Contextual: Task Narrative, Clinical Trial Phase (I-1V),
Abstract Summary.

Extracted data were then synthesized by stage as needed
for the drug development pipeline. Studies were profiled and
compared across multiple dimensions including application
scope, base architecture, task type, and dataset diversity. The
The complete metadata tables containing all reviewed studies
are provided in the Section 9. This structured comparison



informed the construction of the Prompt-to-Pill multi-agent
framework introduced later in the paper.

Methodology

Prompt-to-Pill Architecture Foundation

The systematic review of 51 studies (2022-2025) shows a sharp
growth in research, peaking in 2024 (14 preclinical/DD, 8
clinical), with 17 in 2025, and fewer in 2022 (4) and 2023 (8).

Preclinical /DD studies mainly used generative LLMs such
as LLaMA and GPT-2 for creative molecular tasks on
open datasets (TDC, DrugBank). Models like DrugGen
[Sheikholeslami et al., 2025] and DrugGPT [Li et al., 2023]
generate SMILES from protein sequences, 3D structures, or
text, while others introduce spatial constraints (3DSMILES-
GPT [Wang et al.,, 2025b]) or RNA design (GenerRNA
[Zhao et al., 2024]). DrugAssist [Ye et al., 2023] extends
this process with prompt-based molecule optimization, refining
compounds to improve pharmacological properties. LLMs also
support ADMET prediction, synthesis feasibility, and reactivity
analysis [Cai et al., 2025, Wang et al., 2025a, Chaves et al.,
2024], as well as biological interaction modeling and drug
repurposing [Beasley et al., 2025, Li et al., 2025, Edwards et al.,
2023, Schmitt et al., 2025].

Clinical studies, by contrast, rely on discriminative or
hybrid models such as GPT-4 and BioBERT, often trained on
structured data (e.g., ClinicalTrials.gov). About half of the 19
clinical papers propose cross-phase models addressing patient
selection, outcome prediction, and document generation. LLMs
assist in patient-trial matching [Datta et al., 2025, Lin et al.,
2024], trial simulation [Wang et al., 2024, Reinisch et al., 2024,
Xu et al., 2025], and pharmacovigilance through tools like
AskFDALabel and DAEDRA [Wu et al., 2025, von Csefalvay,
2024], occasionally enhanced with RAG pipelines for context-
aware text generation [Markey et al., 2025, Painter et al.,
2025].

Retrieval-augmented generation (RAG) methods showed
limited adoption despite their potential for complex reasoning
tasks. As shown in Table 1, most studies provided input
examples but fewer included output data or reproducible
code, underscoring the need for transparency and standardized
evaluation.

This analysis informed the design of the proposed Prompt-
to-Pill architecture, implemented using the AutoGen [Wu et al.,
2024] framework for scalable multi-agent AI systems. Each
agent is adapted from rigorously evaluated domain models, with
key performance metrics summarized in Table 2.

The datasets listed in Table 2 implicitly define the
applicability domains (ADs) of the models integrated into
the pipeline. For example, ChemFM’s ADME and toxicity
predictors are trained on specific benchmarking collections of
drug-like compounds, while Panacea and MediTab operate
within the disease areas and trial structures represented in
CT.gov, SIGIR, and TREC. Because Prompt-to-Pill connects
these components sequentially, the effective AD of the full
system corresponds to the intersection of all model-specific
ADs.

The Prompt-to-Pill Multi-Agent Pipeline

Constructed from the models identified and reviewed in this
study, a comprehensive Al-driven pipeline for DD and clinical
trial simulation is presented in Figure 2, structured into three
main phases: DD Agents, Preclinical Agents and Clinical

Short Article Title | 3

Agents, coordinated by a central Orchestrator, assisted by
a Planning Agent. The workflow is task-driven, dynamically
selecting the appropriate agent and its tools according to the
requirements of the given task.

In our scenario, we demonstrate this process by focusing on
the development of drug candidates for the DPP4 protein target
(UniProt ID: P27487). For this drug development task, the
pipeline begins with Drug Discovery Agents. Here we have 3
subgroups of agents: Hits Generation, Leads Identification and
Lead Optimization.

The workflow begins with Hits Generation, where the Drug-

Generation Agent, based on the DrugGen framework [Sheikholeslami

et al., 2025], produces a set of candidate SMILES sequences.
Then the generated SMILES are docked against the target
with Docking Agent. The Docking Agent is responsible for
evaluating the binding affinity of generated molecules against
the target protein. Retrieves the target structure from the
Protein Data Bank [Berman et al.,, 2000] or defaults to
AlphaFold models [Jumper et al., 2021] when no experimental
structure is available. Candidate SMILES from the Drug-
Generation Agent are converted into 3D conformations using
RDKit3. Binding pockets are predicted with P2Rank [Krivdk
and Hoksza, 2019]47 and the highest-ranked pocket defines
the docking box, whose coordinates are extracted from the
P2Rank output and expanded with a fixed padding margin.
With receptor and ligand prepared, AutoDock Vina (v1.1.2)
performs docking within the predicted pocket, generating 20
poses ranked by affinity. Using this approach, we achieved
RMSD lower than 2 A in 86.59% of cases and a mean RMSD
of 1.16 A on the Astex dataset. The docking setup and
visualization, including binding sites, grid box, and ligand, are
shown in Figure 3

Following the generation and docking of hits, the workflow
progresses to the Lead Identification stage. The Chemical
Properties Agent calculates key physicochemical descriptors
(molecular weight, logP, TPSA, hydrogen bond donors and
acceptors, rotatable bonds, QED, etc.) using RDkit driven tools
. Molecules are filtered according to Lipinski’s Rule of Five®
[Lipinski et al., 2001] and Veber’s rules® [Veber et al., 2002],
ensuring that only drug-like compounds advance. In parallel,
the ADMET Properties Agent, using ChemFM|[Cai et al., 2025]
framework, is also invoked at this stage to provide an early
assessment of ADMET. Properties that this agent can predict
are presented in 2. Compound that show the most favorable
docking, pass physicochemical filters, and exhibit acceptable
ADMET predictions is prioritized as lead.

Next is Lead Optimizations stage. This stage focuses on
optimizing the chosen molecule to enhance its pharmacological
profile while preserving strong binding affinity to the
DPP4 target. The Molecule Optimization Agent, based on
DrugAssist [Ye et al., 2023], iteratively modifies the structure to
enhance bioavailability, solubility, and safety. Each optimized
variant is re-evaluated by the ADMET Properties Agent and
Docking Agent, and this loop continues until optimal properties
are achieved.

The optimized compound with properties serve entry point
into the Preclinical Phase, where the optimized candidate

3 https://www.rdkit.org

4 P2Rank success rates: 72.0% Top-n, 78.3% Top-(n+2) on
COACH420; 68.6% Top-n, 74.0% Top-(n+2) on HOLO4K

5 HBD < 5, HBA < 10, MW < 500,logP < 5
6 RotB < 10,TPSA < 1404
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Fig. 2. Prompt-to-Pill Multi-Agent Architecture.

Fig. 3. Docking visualization of DPP4 (PDB ID: 2QT9) showing
the predicted binding pocket (green grid box; center = 37.87, 49.09,
36.58; edge = 25.02 A) and the docked ligand (magenta; SMILES:
OB(O)clnnc2nl-cleec(Cl)cclC(cleccecclF)=NC2). Pocket side chains are
shown as colored sticks (colors for visual separation only) and correspond
to validated binding residues ARG125, GLU205, GLU206, TYR547,
TYR631, SER630, HIS740, and ASN710 [Mathur et al., 2023].

undergoes systematic pharmacokinetic and toxicity profiling
using ADMET Agent’s tools.
completed, the workflow is shifted into the Clinical Phase

Once these evaluations are

for trial simulation.
In the Phase, the Trial
constructs a trial protocol tailored to the compound and disease

Clinical Generation Agent

driven by Panacea model for criteria, arms and outcomes
prediction. This protocol is parsed into structured data and
passed to the Patient-Matching Agent, which also employs
the Panacea model [Lin et al., 2024] to evaluate patient
EHR descriptions and identify candidates who meet the trial’s
inclusion and exclusion criteria. The agent returns number of
matched patients in the final report, and a set of matched
patient IDs. These identifiers are saved to a file and the
total number of matched patients is computed and included
in the final trial report. Subsequently, the Trial Outcome
Prediction Agent uses MediTab [Wang et al., 2024] to estimate
the probability that the proposed trial will succeed, given

its protocol structure. In line with the original MediTab

Chemical
Properties Agent

Lead Identification

Preclinical Phase

Clinical Phase

FDA or EMA approval
and documentation

&

Docking Agent

Pharmacovigelance and
safety monitoring

Candidate
Drug

Planning Agent Orchestrator

formulation[Wang et al., 2024], this module operates on trial-
level metadata and text and learns patterns from historical
ClinicalTrials.gov and HINT benchmarks.

Finally, the matched patient data, drug properties, and trial
design are provided to the Orchestrator, which aggregates all
outputs into a structured report.

The input and output format for the Dipeptidyl peptidase
4 (DPP4) target are shown in Figure 4.

Limitations and Future Work

Prompt-to-Pill is designed as a research-oriented, hypothesis-
generation framework intended for use exclusively by trained
professionals such as bioinformaticians, medicinal chemists,
pharmacologists, and clinicians. The system is not intended
for clinical or regulatory decision-making. Instead, its outputs
serve as exploratory insights that must be experimentally
or clinically validated before any real-world application. The
framework aims to support early ideation, academic research,
and computational prototyping. While the proposed Prompt-
to-Pill pipeline offers a structured, automated approach to drug
discovery and clinical simulation, several limitations remain.
First, as shown in Figure 2, some agents remain conceptual
placeholders (highlighted in grey), like Target Identification
Agent, the Formulation and Dosage Development Agent,
FDA or EMA approval the
Pharmacovigilance and Safety Monitoring Agent. Although
identified
lack accessible implementations or compatible I/O interfaces,

and documentation and

we related approaches in the literature, most

preventing integration. Bridging this gap remains a key
direction for future work.

Second, the Orchestrator is currently implemented using
OpenAl’s o4-mini model, which has been shown to perform
strongly in medical reasoning and biomedical tasks Arora et al.
[2025]. However, in the trial generation phase, its role is used to
producing structured protocol fields such as:study documents,
brief summary, acronym, brief title, official title,study status,
study start date, primary completion date, completion date,
condition, study type, phase, intervention model, allocation,
masking, and enrollment. While useful for structuring and
simulating trial protocols, these outputs cannot substitute for
expert-driven trial design.

Third, the
applicability domain (AD) of its training data, and the pipeline
inherits the

each component model operates within

therefore intersection of all ADs. Predictions
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Hits: Leads (passed Lipinski & Veber):
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IMW;267.25, logP:
- ADMET (best lead "CN(C)C."):
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{MW:31439, logP:1.57, TPSA:69.3, Ro
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66, TPSA139.28, RotB:2, QED:0.51}

ina, keal/mol): [-6.5, -7.8. -7.6, 6.4, -T.1, -7.5,-7.6] {Oral ilability-0 988, Intestinal Ak

Short Article Title | 5

Optimized Lead:
- SMILES: "OB{O}clnnc2nl <lece(Clec] Ccleocoel F)=NC'2"

QED0.93) - Chemical Propertics: {MW:356.55, logP:1.09, TPSA:£3.53, RotB:2,

@@HNCICCCIC gl 2. "Celmne2nl clece(Cheel Cleloceoe]l Fy=NC2” QED:0.67, pKa:8.05, logD_ncs 00, logD_base:0.36}
(CYCCC2=CC(O)=C(O)C=C2C1=0 {MW:326.76, 1o 2, TPSAA3.07, RotB:1, QED:0.68} - ADM {Oral Bioavailabili 998, Intestinal Absorption:1.0,
3, "ONIC=0)Ce2e Inen2{Cii@ H 1 O[CEH](CO)Ca@ HIO)CH] 10" Solubility:-3.87, BBB:0.9%, hERG:0.049, DILL0. 453, C1_mic:6.03,
IMW269.26, logP:-1.99, TPSA:108.05, RotB:2, QED:0.57} CLhep:17.04, AcuteTox:2 28, PPB94.8}

- Docking: -7.5

Clinical Trial Report: elig
inclusion:

- Healthy male subjects

- BMI within 10-20% of ideal body weight
- Good health as determined by hi
- Willingness to comply with visi
- Abstinence or barrier contraception during study
- Abstinence from aleohol and illicit drugs

ihility_criteria:

acronym: "DPP4-SADI",

brief_title: "Phase | Single Ascending Dose Study of DPP4
Inhibitor OB{Qjc] nne2nl-clece{Cljce ] Cleleccoel F)=NC27,
official_title: “A Randomized, Open-Label, Single Ascending
Dose Study to Evaluate Safety, Tolerability, PK/PD of
OB{O)cl nnc2nlcleco{Clecl Ciclceeccl Fy=NC2 in Healthy
Adults".

study_status: “Not yet recruitis
study_start_date: "2027-01",
primary_completion_date: "2027-12",

completion_date: "2028-06",

Type 2 Diabetes Mellitus (healthy volunteers model)"
study_type: "Interventional”,

phase: "Phase I,

intervention_model: "Parallel Assignment”,

" - Abstinence from all medications or supplements
: - Abstinence from smoking or tobacco use

- Abstinence from strenuous physical activity

- Abstinence from caffeine-containing products
juice or products.

- Ahstinence from grapefin
* exclusic

condition:

respiratory, neurological)

- History of major di
- Significant illness within & months prior to screening
- Acuic or chronic infectious discase

allocation: "Randomired” 2

masking: "None”,

§zpltment; 60, B A g

- name: Experimental: DPP4 Inhibitor
participant_group: Healthy male volunteers
micrvention: Single ascending dose of PP4 Inhibitor
OB{Ojcl nnc2nleleco(Cliecl Clel cocee L Fp=NC2
-name: Placeho Comparator: Placebo
participant_group: Healthy male volunteers
itervention: Placebo

- Smoking or tobacco use history
- Positive for hepatitis B, hepatitis C, or HIV

- Blood donation within 3 months.
- Participation in another study within 3 months
- Positive results for drugs of abuse or alcohol screening

- Any condition that may interfere with the study or pose safety risks

Patient Matching: 38 matched paticnts

Trial Success Probability: 0.5874263412590027
Summary: Seven initial hits were
profiles are fvorable. A Phase 1 s

gle ascending dose trial has been structured; predicted success probability is ~ 9%,

story. physical cxam, and labs
. medication, and procedures

- Any significant illness (renal, hepatic, GI, hematalogical, endocrine,

- History of malignant discasc (except basal cell carcinoma of skin}

- Use of medications (including vitamins) within 14 days of dosing

1.0, Solubility:=-2. 36, BBB:0.856, hERG:0.138, DILI:0.811, Cl_mic-12.705, Cl_hep:14.859, AcuteTox:2.74, PPR:58.5)

outcomes:

primary:

“Number of participants with adverse events: This messure will be assessed during the study period to
monitor the safety and tolerability of OB{O)c1nne2nl-clece{Cleel Cleleceee] F}J=NC2 in healthy adult
subjects,

-Number of participants with serious adverse events: This measure will be assessed throughout the study
period to ensure the safety of participants.

-Number of participants with adverse events leading to discontinuation of the study drug: This measure will
be assessed throughout the study period to evaluate the impact of adverse events on participant retention.

-Number of participants with clinical laboratory abnormalities: This mensure will be assessed during the study
peried to monitor the effects of OB(O)clnne2nl-cleco{Clicel Clelceecel F)=NC2 on participants clinical
laboratory parameters.

-Number of participants with vital sign abnormalities: This measure will be assessed during the study period
to ensure the safety and well-being of participants.

-Number of participants with 12-lead electrocardiogram (ECG) abnormalities: This measure will be assessed.
during the study period to monitor the cardiac safety of OB(Ojelnne2ni-clecofCliec] (el ccecel F)=NC2,

secondary:

-Area under the plasma concentration-time curve (AUC) of OB{O)elnnc2nl-cloeeiClice] Cielcoocel F)=NC2:
This measure will be assessed during the study period to evaluate the drug's pharmacokinetics.

i observed plasma c ion (Cmax) of OB{O)elnnenl-clece(Clieel Cleleccce] F)=NC2: This
measure will be assessed during the study period to assess the drug's absorption, distribution, metgholism, and
excretion (ADME) profile.

-Time of maximum observed plasma coneentration (Tmax) of OB(O)clnncZnl-
elece(Cljcel Cleloccee] F)=NC2: This measure will be assessed during the study period to understand the
drug’s onset of action and absorption rate.

_Apparent terminal half-life (t1/2) of OB(O)cInnc2nlcloce(Cliel C{cleceec] F)=NC2: This measure will be
assessed during the study period to evaluate the drug's ehmination rate and duration of action.

nerated and docked; four leads passed phys-chem filters The best lead was optimized to 1 boron-containing analog with improved clearance and reduced hERG liability, Its ADMET, dockng score and chemical

Fig. 4. Prompt-to-Pill’s I/O example for Task: “Simulate drug development for DPP4 (P27487) with patients on /path/to/patients.xml”. ” Trial Success
Probability” correspond to MediTab’s predicted likelihood of clinical trial success based on protocol text and structured trial metadata (e.g., phase,

condition, enrollment, arms, outcomes), and do not represent estimates of the underlying drug’s biological efficacy.

involving molecules, trial structures, or patient populations far
from these distributions should be interpreted as exploratory,
not definitive.

This study also presents only a single-target case (DPP-
4, P27487), demonstrating feasibility but not generalizability.
Future work will extend the framework to multiple targets and
diseases for broader validation.

Future work will focus on completing missing agents,
enlarging the AD of existing components, and performing
multi-disease, multi-target validation studies.

Discussion

‘While LLMs have opened transformative opportunities in drug
discovery and clinical research, realizing their full potential
requires addressing key challenges in transparency, evaluation
consistency, and reproducibility.

A key is the limited
current models. In biomedical contexts, correctness alone is

limitation reasoning ability of
insufficient—decisions must be grounded in clear, interpretable
reasoning that experts can verify. To address this, several recent
models have introduced mechanisms to make reasoning more
explicit. These include retrieval-augmented generation [Wang
et al., 2025a, Xu et al., 2025, Feng et al., 2025], instruction-
tuned multitask learning [Liu et al., 2024, Ma et al., 2024], and
multi-hop rationale generation [Feng et al., 2025, Wang et al.,
2023]. Such approaches represent important progress toward
interpretability. However, without standardized frameworks to
assess reasoning quality or consistency, trust in LLM-driven
biomedical insights remains limited.

Another in LLM-based DD is the
inconsistency in evaluation protocols across model types.

major challenge
Generative models are assessed using metrics like validity,
docking scores, or QED [Sheikholeslami et al., 2025, Wang
et al., 2025b, Zhao et al., 2024], while discriminative models
report AUROC or F1 scores 2025a, Liu
et al., 2024, Ma et al., 2024], yet differ in datasets and
thresholds. Knowledge-retrieval and reasoning systems often

[Wang et al.,

rely on qualitative outputs without standardized measures
[Feng et al., 2025, Wang et al., 2023]. This fragmentation
hinders comparability and progress. To address this, the field
urgently needs task-specific, model-type-sensitive benchmarks.

Reproducibility and transparency also remain persistent
issues. Many studies lack public access to code, models, or I/O
examples, and when repositories exist, documentation is often
incomplete. This fragmentation limits cumulative progress and
undermines trust.

These models are the future of drug development, but there
is still much work to be done. The path forward requires not
only better models, but better systems around the models. This
includes standardized evaluations, transparent documentation,
expert-guided development, and thoughtful regulation. Only by
meeting these unmet needs can we ensure that LLMs evolve
from experimental tools to trusted agents in the future of
biomedical discovery.

Ethical and Regulatory Considerations

As highlighted in recent discussions on responsible biomedical
AI deployment [Tang et al., 2025], LLM-based systems in
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safety-critical domains such as clinical trial design raise central
concerns around transparency, explainability, bias mitigation,
and the risk of over-reliance on unvalidated outputs. The
European Union’s Artificial Intelligence Act (2024) explicitly
designates healthcare AI as “high-risk” (Recital 58; Annex
I11), requiring safeguards such as traceability, human oversight,
and fundamental rights impact assessments. The authors have
recently published their work on AI Act compliance within the
MyHealth@EU framework [Simjanoska Misheva et al., 2025],
demonstrating strong ethical responsibility in advancing AI
use within sensitive healthcare environments. Their tutorial
addresses the dual-compliance challenge of embedding Al
Act safeguards (transparency, provenance, robustness) while
meeting MyHealth@EU interoperability requirements, showing
how AI metadata can be integrated into HL7 CDA and
FHIR messages without disrupting existing standards. The
goal is not to bypass current guidelines but to ease clinicians’
workload, strengthen trust in Al-assisted decisions, and
ensure that compliance and safety are engineered into systems
from the outset. In this context, the present pipeline is
strictly positioned as a research prototype and decision-support
artifact, never as an automated tool for patient eligibility or
therapeutic approval. By embedding governance mechanisms
early and framing the work as proof-of-concept exploration, the
approach contributes to the broader dialogue on trustworthy
Al in DD while acknowledging the rigorous benchmarking,
reproducibility, and expert oversight still required before
clinical translation.

Conclusion

To illustrate practical integration, the Prompt-to-Pill multi-
agent framework was proposed, uniting specialized LLM agents
to automate decision-making across preclinical and clinical
stages. This architecture showcases how coordinated LLM

workflows can collaborate, iterate, and self-correct within
a modular design. Crucially, the successful implementation
of this architecture served simultaneously as a ”limitation
demonstrator,” significantly highlighting the applicability
domain limitations and systemic challenges that must be
overcome, thereby establishing a rigorous foundation upon
which reliable hypothesis generation can be built.

Looking ahead, the progress of LLM-driven drug development
will depend not only on more capable models but on robust
evaluation protocols, transparent sharing, and clear regulatory
standards. Addressing these challenges will allow LLMs not just

to accelerate, but to redefine the future of drug development.

Code Availability

The full implementation of the Prompt-to-Pill multi-agent DD
and clinical simulation pipeline is available at the GitHub
repository: https://github.com/ChatMED/Prompt-to-Pill.

Supplementary Material

Table with the retrieved papers for this review is available at
the following link: Supplementary Table 1.
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Table 1. Availability of I/O Examples, RAG Usage, and Code Links
in Studies

Category Preclinical/DD Clinical

Yes No N/A | Yes No N/A

GitHub/HF link 20 12 - 9 10 -
Input examples 17 2 1 6 2 1
Output examples 6 13 1 1 7 1
RAG usage 3 29 - 6 13 -
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Table 2. Evaluation metrics of the core agents used in the clinical workflow

Citation Agent Dataset / Task Metric(s) Value(s) Type
[Sheikholeslami Molecule Generation — Validity, Novelty, 99.9%, 41.88%, Generation
et al., 2025] (Druggen) Diversity 60.32%
[Cai Property Drug Oral Bioavailability ROC-AUC 0.715 4+ 0.011 Classification
et al., Prediction BBB ROC-AUC 0.908 £ 0.010 Classification
2025] (ChemFM) Drug Half-Life Duration Spearman 0.551 £ 0.020 Regression
Drug Mutagenicity ROC-AUC 0.854 4+ 0.007 Classification
Clearance Hepatocyte Spearman 0.495 £+ 0.030 Regression
Clearance Microsome Spearman 0.611 £+ 0.016 Regression
DILI ROC-AUC 0.920 £+ 0.012 Classification
hERG Channel Blockage ROC-AUC 0.848 £+ 0.009 Classification
Drug Acute Toxicity MAE 0.541 £+ 0.015 Regression
PPBR MAE 7.505 £ 0.073 Regression
P-glycoprotein Inhibition ROC-AUC 0.931 £+ 0.003 Classification
Drug Aqueous Solubility MAE 0.725 4+ 0.011 Regression
VDss Spearman 0.662 4+ 0.013 Regression
CYP2C9 Inhibition PRC-AUC 0.788 £ 0.005 Classification
CYP3A4 Inhibition PRC-AUC 0.878 4+ 0.003 Classification
CYP2C9 Substrate PRC-AUC 0.414 £+ 0.027 Classification
CYP2D6 Inhibition PRC-AUC 0.704 £+ 0.003 Classification
CYP2D6 Substrate PRC-AUC 0.739 £+ 0.024 Classification
Human IA ROC-AUC 0.984 + 0.004 Classification
CYP3A4 Substrate ROC-AUC 0.654 £+ 0.022 Classification
Drug Permeability MAE 0.322 £+ 0.026 Regression
[Wang Trial Phase I Trials AUROC, PRAUC 0.699, 0.726 Classification
et al., Outcome Phase II Trials AUROC, PRAUC 0.706, 0.733 Classification
2024] Prediction(Meditab) Phase III Trials AUROC, PRAUC 0.734, 0.881 Classification
[Ye et al., 2023] Molecule Optimization - Solubility, BBBP, All, 0.74, 0.80, 0.62, 0.98, Generation
(DrugAssist) Valid rate, Similarity 0.69
[Lin PatientMatching SIGIR BACC, F1, R, P 0.43, 0.57, 0.52, 0.66 Classification
et al., TREC 2021 BACC, F1, R, P 0.47, 0.58, 0.54, 0.69 Classification
2024] %gi%‘fgén Criteria BLEU, ROUGE, CR 0.24, 0.4, 0.68  Generation
Arms BLEU, ROUGE, CR 0.28, 0.50, 0.61 Generation
(Panacea) Outcome BLEU, ROUGE, CR 0.31, 0.51, 0.55  Generation

Source: Metrics are based on results reported in the original publications.
'ROC-AUC/AUROC: Area under the Receiver Operating Characteristic Curve, MAE: Mean Absolute Error, PRC-AUC/PRAUC: Area Under Precision-
Recall Curve, BACC: Balanced Accuracy; R: Recall, P: Precision, F1: F1 Score, BLEU: Bilingual Evaluation Understudy, ROUGE: Recall-Oriented
Understudy for Gisting Evaluation, CR: Clinical Relevance



